Skip to main content

Engineering Materials - Introduction

The knowledge of engineering materials and their properties is of great importance for a design engineer. A design engineer must be familiar with the effects which the manufacturing processes and heat treatment have on the properties of the materials. The engineering materials are mainly classified as:

1. Metals and their alloys, such as iron, steel, copper, aluminum etc.
2. Non-metals, such as glass, rubber, plastic etc.


The metals may further be classified as:
(a) Ferrous metals; and (b) Non-ferrous metals.


The ferrous metals are those which have the iron as their main constituent, such as cast iron, wrought iron and steel.

The non-ferrous metals are those which have a metal other than iron as their main constituent, such as copper, aluminum, brass, tin, zinc etc.

The important mechanical properties of metals are as follows:

1. Strength. It is the ability of a material to resist the externally applied forces without breaking or yielding.
2. Stiffness. It is the, ability of a material to resist deformation under stress. The modulus of elasticity is the measure of stiffness.
3. Elasticity. It is the property of a material to regain its original shape after deformation when the external forces are removed. This property is desirable for materials used in tools and machines. It may be noted that steel is more elastic than rubber.
4. Plasticity. It is property of a material which retains the deformation produced under load permanently. This property of material is necessary for forgings, in stamping images on coins, and in ornamental work.
5. Ductility. It is property of a material enabling it to be drawn into wire with the application of a tensile force. A ductile material commonly used in engineering practice (in order of diminishing ductility) are mild steel, copper, aluminum, nickel, zinc, tin and lead.
6. Brittleness. It is the property of a material opposite to ductility. It is the property of breaking of a material with little permanent distortion. Cast iron is a brittle material.
7. Malleability. It is a special case of ductility which permits materials to be rolled or hammered into thin sheets. A malleable material should be plastic but it is not essential to be so strong. The malleable materials commonly used in engineering practice (in order of diminishing malleability) are lead, soft steel, wrought iron, copper and aluminum.
8. Toughness. It is the property of a material to resist fracture due to high impact loads like hammer blows. The toughness of a material decreases when it is heated. This property is desirable in parts subjected to shock and impact loads.
9. Resilience. It is property of a material to absorb energy and to resist shock and impact loads. It is measured by the amount of energy absorbed per unit volume within elastic limit. This property is essential for spring materials.
10. Creep. When a part is subjected to a constant stress at high temperature for a long period of time, it will undergo a slow and permanent deformation called creep. This property is considered in designing internal combustion engines, boilers and turbines.
11. Fatigue. When a material is subjected to repeated stresses, it fails at stresses below the yield point stresses. Such type of failure of a material is known as fatigue. The failure is caused by means of a progressive crack formation which are usually fine and microscopic size. This property is considered in designing shafts, connecting rods, springs, gears etc.
12. Hardness. It is a very important property of the metals and has a wide variety of meanings. It embraces many different properties such as resistance to wear, scratching, deformation and machinability etc. It also means the ability of a metal to cut another metal. The hardness is usually expressed in numbers which are dependent on the method of making the test.

Comments

  1. Replies
    1. Thank you very much. Read more basic concepts of mechanical engineering here:
      http://www.aboutmech.com/p/basics-of-mechanical-engineering.html

      Delete
  2. Why steel is more elastic than rubber

    ReplyDelete

Post a Comment

Popular posts from this blog

Are Engineers Favourite Among Girls?

What do girls think about men who are engineers and what type of engineers are most favourite among girls? A survey was conducted by a team of aboutmech with members chosen from different countries. Each team member carried out a neutral survey in his/ her country to evaluate what females think about most of the engineers from different engineering branches. An overview of different questions asked in survey is given below:

Question: Which male engineers do you find more attractive as a husband?
Almost 50% women voted for mechanical engineers to be the most attractive husbands among other engineers. So mechanical engineers are most favourite among girls as a husband. They find them more trustworthy, intelligent, and creative. A married women from California said, “If your husband is a mechanical engineer, he will help you in everyday tasks. Because mechanical engineers are good team players and they have creative ideas about everything.”

Best CV Format for Mechanical Engineers

Fifty percent engineers fail to grab a dream job because of basic faults in their CVs/ Resume. This article tells you about best CV format for mechanical engineers and how you are supposed to design your CV when applying for jobs. You CV is your first impression on future employer. He/ she does not know you. Your CV is the only representation of your personality. He/ she may select or reject you after first glance on your resume. 
I have experienced shortlisting and interviewing candidates for different jobs. I was astonished to learn that most of the candidates simply copy paste each others CVs without any changes at all. These types of CVs are rejected immediately. I am not trying to tell you that you should avoid copying, rather i ma telling you to refrain from giving your CV to your friends.
An ideal CV consists of following portions:
Name/ Address of the applicantObjectiveEducation RecordEmployment HistoryProfessional SkillsAwards & AchievementsCo-Curricular Activities/ Inter…

Engineering Mechanics - Introduction

The Engineering Mechanics is that branch of Engineering-science which deals with the principles of mechanics along with their applications to engineering problems. It is sub-divided into the following two main groups:

(a) Statics, and (b) Dynamics

The Statics is that branch of Engineering Mechanics which deals with the forces and their effects, while acting upon the bodies at rest.

The Dynamics is that branch of Engineering Mechanics which deals with the forces and their effects, while acting upon the bodies in motion. It is further sub-divided into the following two branches:

(i) Kinetics, and (ii) Kinematics

The Kinetics is that branch of Dynamics, which deals with the bodies in motion due to the application of forces.

The Kinematics is that branch of Dynamics which deals with the bodies in motion without taking into account the forces which are responsible for the motion.